

Briefing on DOE Spent Nuclear Fuel Technical Exchange of March 5 and 6, 2003

Presented to:

National Spent Nuclear Fuel Program Strategy Meeting

Presented by:
Joe C. Price
Yucca Mountain Project
Office of License Application and Strategy
U.S. Department of Energy

April 22, 2003
Gaithersburg, Maryland

Scope of Technical Exchange

- Limited to DOE SNF; excludes other waste forms such as immobilized plutonium, high-level waste, commercial mixed oxide, etc.
- Focus on conceptual level issues

Topics Covered in Technical Exchange

- Overview of DOE SNF
- Handling and Disposal of DOE SNF
- Yucca Mountain Project Approach to Control of Criticality and Radionuclide Transport
- DOE SNF Source Term Development
- DOE SNF Canisters
- DOE SNF Approach for Postclosure Assessment Total System Performance Assessment-License Application (TSPA-LA)
- Criticality Analyses

Handling and Disposal of DOE Spent Nuclear Fuel

- Regulatory and Interface Documents
- Waste Form
- Repository Surface Facilities
- Waste Packages
- Subsurface Disposal

Yucca Mountain Project Approach to Control of Criticality and Radionuclide Transport

- Design and Safety Analysis Principles
- General Approach to Control of Criticality and Radionuclide Transport
- Specific Approach for DOE SNF
- Confidence Building Evaluations

Source Term Development

- Objective
- Applications
- Methodology
- Conservatisms
- Estimated Radionuclide Inventory
- Adequacy for Postclosure

General Approach in Source Term Development

- Develop a consistent and defensible method to estimate radionuclide inventory for all DOE SNF
- Support postclosure TSPA-LA analyses
- Developed templates for reactor types based on enrichment, moderator, cladding, fuel compound
- Highest burn-ups were used

DOE Spent Nuclear Fuel Canisters

- Role of the Canisters in Preclosure Analysis
- Design Considerations
- Canister Design
 - Standardized DOE SNF Canister
 - Multi-Canister Overpack
- Qualification Plan
- Implementation of the Qualification Plan
- Canister Deployment

DOE Spent Nuclear Fuel Approach for Postclosure Assessment

- Introduction to TSPA-LA Model
- Approach to Include DOE SNF in TSPA-LA
- DOE SNF Groups for TSPA-LA

Preclosure Criticality Analyses

- Preclosure Criticality Approach
- Event Sequence Evaluation Process
- Non-Waste Package Criticality
 - Event Sequences
 - Methodology
- Waste Package Criticality
 - Event Sequences
 - Methodology

Postclosure Criticality Analyses

- Postclosure Criticality Methodology
- DOE Spent Nuclear Fuel Groupings
- DOE Spent Nuclear Fuel Waste Packages
- Postclosure Criticality Analysis

Summary of Technical Exchange Highlights

- Most DOE SNF will be shipped to Yucca Mountain in standardized canisters
- DOE-owned intact commercial spent nuclear fuel will be shipped bare
- Standard canisters have a low-breach probability
- Preclosure consequences of canister breach will not be evaluated

Summary of Technical Exchange Highlights

- Preclosure criticality is expected to be screened out on the basis of moderator exclusion from the Dry Transfer Facility
- Postclosure criticality is expected to be screened out on the basis of low probability of occurrence
- TSPA-LA analyses will use a surrogate fuel inventory based on the DOE SNF source term estimates
- Postclosure doses from DOE SNF are expected to be significantly less than those from commercial spent nuclear fuel

